Name	
Date	Hr

5.1, Use Properties of Exponents

COAL

Simplify expressions involving powers.

Vocabulary

A number is expressed in scientific notation if it is in the form $c \times 10^n$ where $1 \le c < 10$ and n is an integer.

PROPERTIES OF EXPONENTS

Let a and b be real numbers and let m and n be integers.

Product of Powers Property $a^m \cdot a^n = a$

Power of a Power Property $(a^m)^n = a$

Power of a Product Property $(ab)^m = a \underline{\hspace{1cm}} b \underline{\hspace{1cm}}$

Negative Exponent Property $a^{-m} =$, $a \neq 0$

Zero Exponent Property $a^0 = a \neq 0$

Quotient of Powers Property $\frac{a^m}{a^n} = a$, $a \neq 0$

Power of a Quotient Property

Example 1 Evaluate numerical expressions

a.
$$(6^2)^3 = 6$$
___ = 6__ = ___

c.
$$7^{-4} = =$$

iceland iceland covers about 1.03 \times 10 5 square kilometers and has approximately 2.94 \times 10⁵ people. About how many people are there per square kilometer?

Solution

Divide population by land area. Population Land area **Quotient of powers property** Use a calculator. Zero exponent property There are about ___ people per square kilometer.

Example 3 Simplify expressions

	Ompily oxproduction	
a. $\frac{(x^5y^2)^3}{x^{15}y^8} = \frac{1}{x^{15}y^8}$	x ¹⁵ y ⁸	Power of a product property
=	$\frac{\boxed{}^{15}y^8}$	Power of a power property
=		Quotient of powers property Simplify exponents.
		Zero exponent property
=		Negative exponent property
$b. \left(\frac{a^{-4}}{b^2}\right)^2 =$		Power of a quotient property
=		Power of a power property
=		Negative exponent property

Evaluate the expression.

1.
$$(2^2 \cdot 5)^2$$

2.
$$7^3 \cdot 7^{-1}$$

1.
$$(2^2 \cdot 5)^3$$
 2. $7^3 \cdot 7^{-1}$ **3.** $(8^0 \cdot 6^{-2})^{-1}$ **4.** $(\frac{9^6}{9^4})^3$

4.
$$\left(\frac{9^6}{9^4}\right)^3$$

$$5. \quad \left(\frac{3x}{z^2}\right)^0$$

6.
$$t^7t^2t^{-8}$$

7.
$$(k^{-3}m^4)^{-2}$$

6.
$$t^7 t^2 t^{-8}$$
 7. $(k^{-3} m^4)^{-2}$ **8.** $\left(\frac{f^5}{g^{-2}}\right)^{-3}$

Example 4

Compare real-life volumes

Beach Ball The radius of a beach ball is about 5.6 times greater than the radius of a baseball. How many times as great as the baseball's volume is the beach ball's volume?

Solution

Let r represent the radius of the baseball.

$$\frac{\text{Beach ball's volume}}{\text{Baseball's volume}} = \frac{\frac{4}{3}\pi(\underline{})^3}{\frac{4}{3}\pi r^3} \qquad \begin{array}{l} \text{The volume of a} \\ \text{sphere is } \frac{4}{3}\pi r^3. \\ \\ = \frac{\frac{4}{3}\pi}{\underline{}} \qquad \begin{array}{l} \text{Power of a} \\ \text{product property} \\ \\ = \underline{} \qquad \begin{array}{l} \text{Quotient of powers} \\ \\ \text{Zero exponent} \\ \\ \text{property} \\ \\ \\ \approx \underline{} \qquad \begin{array}{l} \text{Approximate power.} \\ \end{array}$$

The beach ball's volume is about ____ times as great as the baseball's volume.

9. Rework Example 4 where the radius of a volleyball is about 3 times the radius of a baseball.

5-1 Advanced Algebra Evaluate the expression.

21)
$$(\frac{3}{7})^3$$

23)
$$11^{-2} \cdot 11^{0}$$

25)
$$\left(\frac{1}{8}\right)^{-4}$$

27)
$$\frac{2^2}{2^{-9}}$$

29)
$$6^0 \cdot 6^3 \cdot 6^{-4}$$

$$31) \quad \left(\left(\frac{2}{5}\right)^{-3}\right)^2$$

Simplify the expression.

33)
$$(2^3x^2)^5$$

37)
$$(x^4y^7)^{-3}$$

41)
$$\frac{x^{-1}y}{xy^{-2}}$$

43)
$$\frac{2x^2y}{6xy^{-1}}$$

45)
$$\frac{xy^9}{3y^{-2}} \cdot \frac{-7y}{21x^5}$$

47)
$$\frac{12xy}{7x^4} \cdot \frac{7x^5y^2}{4y}$$

Write an expression for the area or volume of the figure in terms of x.

49)
$$A = \pi r^2$$

51)
$$V = \frac{4}{3}\pi r^3$$

Write the expression as a complex number in standard form.

79)
$$(-5+3i)-(-2-i)$$

81)
$$-i(7+2i)$$

83)
$$(3+i)(9+i)$$

Algebra II

2-6

1. For the scatter plot shown, state whether x and y have a positive correlation, a negative correlation, or no correlation.

2. For the scatter plot shown, state whether x and y have a positive correlation, a negative correlation, or no correlation.

3. For the scatter plot shown, state whether x and y have a positive correlation, a negative correlation, or no correlation.

A **scatter plot** is a graph of a set of data pairs (x, y). If y tends to increase as x increases, then the data have a **positive correlation**. If y tends to decrease as x increases, then the data have a **negative correlation**. If the points show no obvious pattern, then the data have approximately no correlation.

CORRELATION COEFFICIENTS A **correlation coefficient**, denoted by r, is a number from -1 to 1 that measures how well a line fits a set of data pairs (x, y). If r is near 1, the points lie close to a line with positive slope. If r is near -1, the points lie close to a line with negative slope. If r is near 0, the points do not lie close to any line.

r = -1Points lie near line

with a negative slope.

Points do not lie near any line.

Points lie near line with positive slope.

Plot the Pearson r on the number line and identify strong and weak areas.

Tell whether the correlation coefficient for the data is closest to -1, -0.5, 0, 0.5, or 1.

Algebra	II
---------	----

Name	
Date	Hr

5.2 Evaluate and Graph Polynomial Functions

Evaluate and graph other polynomial functions. GOAL

Vocabulary

A polynomial is monomial or a sum of monomials.

A polynomial function is a function of the form

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where $a^n \neq 0$, the exponents are all whole numbers, and the coefficients are all real numbers.

Synthetic substitution is another way to evaluate a polynomial function, involving fewer operations than direct substitution.

The end behavior of a polynomial function's graph is the behavior of the graph as x approaches positive infinity or negative infinity.

Example 1 Identify polynomial functions

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

a.
$$f(x) = 3x^3 + 4x^{2.5} - 6x^2$$
 b. $f(x) = x^2 + 3.7x + 9x^4$

b.
$$f(x) = x^2 + 3.7x + 9x^4$$

Solution

linear:

a. The function _____ a polynomial function because the term ____ has an exponent that is

quadratic: cubic:

quartic:

b. The function ____ a polynomial function written as

in its standard form. () and a leading coefficient

of .

If the function is a polynomial function, write it in standard form and state its degree, type, and leading coefficient.

1.
$$g(x) = ix + 7$$

1.
$$g(x) = ix + 7$$
 2. $s(x) = 2x^2 + x^{-1}$ **3.** $d(x) = 3\pi x^2$

3.
$$d(x) = 3\pi x^2$$

degree: type: leading coefficient:

Example 2

Evaluate by synthetic substitution

Use synthetic substitution to evaluate

$$f(x) = 2x^4 + 3x^3 - 6x^2 + 3$$
 when $x = 2$.

Write the coefficients of f(x) in order of _

exponents. Write the value of x to the left. Bring down the leading coefficient. Multiply the leading coefficient by

and write the product under the second coefficient.

_____. Multiply the previous sum by ____ and write the product under the second coefficient. Add. Repeat for all of the remaining coefficients.

4. Evaluate $g(x) = -4x^2 + 6$ when x = 3 using direct substitution. Check with synthetic substitution.

END BEHAVIOR OF POLYNOMIAL FUNCTIONS

For the graph of

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$
:

- If $a_n > 0$ and n is odd, then $f(x) \to \underline{\hspace{1cm}}$ as $x \to -\infty$ and $f(x) \to \underline{\hspace{1cm}}$ as $x \to +\infty$.
- If $a_n < 0$ and n is odd, then $f(x) \to$ ____ as $x \to -\infty$ and $f(x) \to$ ___ as $x \to +\infty$.
- If $a_n > 0$ and n is even, then $f(x) \to$ ____ as $x \to -\infty$ and $f(x) \to$ ___ as $x \to +\infty$.
- If $a_n < 0$ and n is even, then $f(x) \to$ ____ as $x \to -\infty$ and $f(x) \to$ ___ as $x \to +\infty$.

Example 3 Graph polynomial functions

Graph
$$f(x) = -x^3 + 2x^2 + 2x - 1$$
.

Solution

Make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-3	-2	-1	0	1	2	3
f(x)							

The degree is ____ and the leading coefficient is ____ , so $f(x) \to$ ____ as $x \to -\infty$ and $f(x) \to$ ____ as $x \to +\infty$.

Ex. 4. $f(x) = -x^4 + 3x^3 + x^2 - 4x - 1.$

Evaluate f(x) for x = -2 using synthetic substitution.

-1

0

1

2

3

Graph f(x).

Describe the end behavior of the graph

Use synthetic substitution to evaluate the polynomial function for the given value of x.

1)
$$f(x) = x^3 + 5x^2 + 4x + 6, x = 2$$

2)
$$f(x) = 2x^3 + x^4 + 5x^2 - x, x = -3$$

3)
$$f(x) = x^3 - x^5 + 3, x = -1$$

4)
$$f(x) = 5x^3 - 4x^2 - 2, x = 0$$

Polynomial Functions

Degree	Туре	Standard form
0	Constant	$f(x) = a_0$
1	Linear	$f(x) = a_1 x + a_0$
2	Quadratic	$f(x) = a_2 x^2 + a_1 x + a_0$
3	Cubic	$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$
4	Quartic	$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$

For use with pages 323-328

Use the properties of exponents to evaluate the expression.

1.
$$(3^4)(3^{-2})$$

2.
$$(5^2)^3$$

3.
$$\left(\frac{2}{3}\right)^3$$

4.
$$\frac{.8^4}{8^6}$$

5.
$$(7^6)(7^{-6})$$

6.
$$\frac{4 \cdot 4^3}{4^6}$$

7.
$$\frac{(3^2)^5}{3^8}$$

8.
$$\left(\frac{1}{2}\right)^{-4}$$

9.
$$\frac{5^6}{(5^3)^2}$$

Simplify the expression.

10.
$$x^3 \cdot x^2$$

11.
$$\frac{2y^3}{y^5}$$

12.
$$(3x)^2$$

13.
$$\left(\frac{y}{2}\right)^3$$

14.
$$(4x^3)^4$$

15.
$$x^0y^{-2}$$

16.
$$\frac{5x^2y}{2x^{-1}y^3}$$

17.
$$\frac{-3xy}{9x^3y^{-4}}$$

18.
$$\frac{(3x)^2}{6x^5}$$

Use the properties of exponents to evaluate the expression.

$$7.6^{-2}\cdot6^{-1}$$

10.
$$(-3)^2(-3)^3$$

13.
$$\frac{5^4}{5^2}$$

16.
$$\frac{(-2)^8}{(-2)^3}$$

22.
$$\left(\frac{3}{2}\right)^3$$

Simplify the expression. 31. $x^3 \cdot x^5$

34.
$$(3x)^3$$

37.
$$\frac{x^3}{x^9}$$

2.
$$2^6 \cdot 2^2$$

5.
$$2^{-5} \cdot 2^3$$

8.
$$3^{-2} \cdot 3^{-3}$$

11.
$$(-5)^{-6}(-5)^8$$

14.
$$\frac{7^6}{7^9}$$

17.
$$\frac{(-3)^3}{(-3)^4}$$

20.
$$(3^2)^3$$

23.
$$\left(-\frac{2}{5}\right)^2$$

26.
$$\left(\frac{4}{5}\right)^0$$

29.
$$\left(\frac{3}{4}\right)^{-2}$$

32.
$$x^4 \cdot x^8$$

35.
$$\left(\frac{x}{2}\right)^4$$

38.
$$\left(\frac{3}{x}\right)^2$$

3.
$$4^3 \cdot 4^2$$

6.
$$5^{-7} \cdot 5^{8}$$

9.
$$2^{-4} \cdot 2^{-3}$$

12.
$$(-2)^{-3}(-2)^{-2}$$

15.
$$\frac{3^5}{3^5}$$

18.
$$(5^2)^3$$

21.
$$\left(\frac{1}{3}\right)^4$$

24.
$$\left(-\frac{1}{4}\right)^3$$

30.
$$\left(\frac{2}{3}\right)^{-4}$$

33.
$$(x^4)^6$$

36.
$$\frac{x^7}{x^2}$$

39.
$$\left(\frac{x}{4}\right)^{-2}$$

Practice B For use with pages 336-345

Decide whether the function is a polynomial function. If it is, write the function in standard form and state the degree, type, and leading coefficient.

1.
$$f(x) = 7 - 2x$$

2.
$$g(x) = 2x - x^3 + 8$$

3.
$$h(x) = x^4 - x^{-3}$$

Use direct substitution to evaluate the polynomial function for the given value of x.

4.
$$f(x) = 6x^4 - x^3 + 3x^2 - 5x + 9; x = -1$$
 5. $g(x) = 7x - x^4 + 1; x = -4$

5.
$$g(x) = 7x - x^4 + 1; x = -4$$

Use synthetic substitution to evaluate the polynomial function for the given value of x.

6.
$$f(x) = 7x^4 - 3x^3 + x^2 + 5x - 9; x = 2$$
 7. $g(x) = x^3 - 8x + 6; x = -3$

7.
$$g(x) = x^3 - 8x + 6; x = -3$$

Describe the end behavior of the graph of the polynomial function by completing these statements: $f(x) \to \underline{?}$ as $x \to -\infty$ and $f(x) \to \underline{?}$ as $x \to +\infty$.

8. $f(x) = -5x^3$

 $f(x) \rightarrow$

f(x) →

- f (x) >
- as x >+ &
- f(x) →

10. $f(x) = 2x^8 + 9x^7 + 10$

- f(x) >
- as x→-∞
- +(x)>

f(x)>

- ₽(x)→
- as

Graph the polynomial function.

12. $f(x) = -x^3 - 2$

13. $g(x) = x^4 + 2x$

14. $h(x) = -x^4 + 2x^3 - 5x + 1$

Evaluate the expression.

1.
$$2^5 \cdot 2^3$$

3.
$$4^{-6} \cdot 4^{-1}$$

5.
$$\frac{4^{-7}}{4^{-3}}$$

7.
$$\left(\frac{2}{3}\right)^3$$

2.
$$(-7)^2(-7)$$

4.
$$(5^{-2})^2$$

6.
$$\frac{8^{-4}}{8^2}$$

8.
$$\left(\frac{4}{5}\right)^{-3}$$

Write the answer in scientific notation.

9.
$$(6.1 \times 10^5)(2.2 \times 10^6)$$

10.
$$(2.6 \times 10^{-7})(1.3 \times 10^{2})$$

10.
$$(2.6 \times 10^{-7})(1.3 \times 10^2)$$
 11. $(3.4 \times 10^{-1})(3.1 \times 10^{-2})$

12.
$$(5.8 \times 10^{-7})(8.1 \times 10^{12})$$
 13. $(4.5 \times 10^4)^2$

13.
$$(4.5 \times 10^4)^2$$

14.
$$(3.7 \times 10^{-5})^2$$

15.
$$(7.2 \times 10^{-3})^3$$

15.
$$(7.2 \times 10^{-3})^3$$
 16. $\frac{9.9 \times 10^9}{1.5 \times 10^8}$

17.
$$\frac{8.4 \times 10^{-6}}{2.4 \times 10^{9}}$$

Simplify the expression.

18.
$$\frac{x^8}{x^4}$$

19.
$$\frac{y^4}{y^{-7}}$$

20.
$$(3^2s^3)^6$$

21.
$$(4^0w^2)^{-5}$$

22.
$$(y^4z^2)(y^{-3}z^{-5})$$

23.
$$(2m^3n^{-1})(8m^4n^{-2})$$

24.
$$(7c^7d^2)^{-2}$$

25.
$$(5g^4h^{-3})^{-3}$$

26.
$$\frac{x^5y^{-8}}{x^5y^{-6}}$$

27.
$$\frac{16q^0r^{-6}}{4q^{-3}r^{-7}}$$

$$28. \quad \frac{12a^{-3}b^9}{21a^2b^{-5}}$$

29.
$$\frac{8e^{-4}f^{-2}}{18ef^{-5}}$$

Algebra II

Name _____

Date _____Hour___

LESSON Practice A 5.1 For use with pages 330–33:

Evaluate the power.

2.
$$5^3$$

3.
$$2^5$$

6.
$$2^{-1}$$

8.
$$10^{-6}$$

Evaluate the expression.

9.
$$4^2 \cdot 4^3$$

10.
$$(-3)^4(-3)$$

11.
$$(5^2)^3$$

12.
$$(7^0)^5$$

13.
$$2^0 \cdot 2^{-5}$$

14.
$$\frac{3^7}{3^4}$$

15.
$$(10^3)^3$$

16.
$$\left(\frac{5}{6}\right)^2$$

17.
$$\frac{(-5)^6}{-5}$$

18.
$$\frac{8^2}{8^3}$$

19.
$$\frac{9^2}{9^{-2}}$$

20.
$$\left(\frac{1}{2}\right)^{-5}$$

Write the number in scientific notation.

Write the answer in scientific notation.

27.
$$(3.2 \times 10^4)(1.5 \times 10^5)$$

29.
$$(2.8 \times 10^3)^2$$

31.
$$\frac{8.4 \times 10^{10}}{1.4 \times 10^8}$$

28.
$$(5.7 \times 10^{-6})(6.2 \times 10^{8})$$

30.
$$(4.3 \times 10^2)^2$$

32.
$$\frac{3.6 \times 10^{-5}}{4.8 \times 10^{-7}}$$

Simplify the expression.

33.
$$b^4 \cdot b^2$$

35.
$$(s^7)^2$$

37.
$$\frac{z^9}{z^5}$$

39.
$$\left(\frac{x}{3}\right)^3$$

34.
$$x^{-3} \cdot x^5$$

36.
$$(5y)^2$$

38.
$$\frac{m^2}{m^6}$$

40.
$$\left(\frac{n}{4}\right)^{-2}$$

Algebra I	1
-----------	---

Name Date

5.3, Add, Subtract, and Multiply Polynomials

Goal · Add, subtract, and multiply polynomials.

Example 1 Add polynomials vertically and horizontally

a.
$$3x^3 - 2x^2 + 4x - 6$$

 $+ x^3 - 5x^2 + 3$

b.
$$(2y^3 + 7y^2 - 6y) + (-4y^2 + 3y - 9)$$

=

=

Example 2 Subtract polynomials vertically and horizontally

$$7x^{3} - 6x^{2} - 3x + 7$$

$$- (6x^{3} + 3x^{2} - 7x + 5)$$

$$7x^{3} - 6x^{2} - 3x + 7$$

a.

$$7x^{3} - 6x^{2} - 3x + 7$$

$$- (6x^{3} + 3x^{2} - 7x + 5)$$
b.
$$(8x^{2} - 5x + 11) - (12x^{2} - 9x - 3)$$

$$= 8x^{2} - 5x + 11$$

$$=$$

Find the sum or difference.
1.
$$(4x^3 - 2x^2 + 5) + (-x^3 - x^2 + 4x - 2)$$
 2. $(9x^2 - 8x + 3) - (2x^2 + x - 4)$

2.
$$(9x^2 - 8x + 3) - (2x^2 + x - 4)$$

$$3x^2 - x + 4$$

$$x + 2$$

Multiply $3x^2 - x + 4$ by Multiply $3x^2 - x + 4$ by 2

Combine like terms.

 r

Example 4 Multiply three binomials

Multiply (x - 3)(x + 7)(x + 1) in a horizontal format.

$$(x-3)(x+7)(x+1)$$

$$=(\underline{\hspace{1cm}})(x+1)$$

Find the product.

3.
$$(z^2-5z+3)(z-1)$$

3.
$$(z^2 - 5z + 3)(z - 1)$$
 4. $(x - 2)(x - 1)(x + 3)$

SPECIAL PRODUCT PATTERNS

Sum and Difference

Example

$$(a + b)(b - a) = a^2 - b^2$$
 $(x + 2)(x - 2) = ____$

$$(x+2)(x-2) =$$

Square of a Binomial

$$(a + b)^{2} = a^{2} + 2ab + b^{2} (y + 4)^{2}$$

$$= \underline{\qquad \qquad }$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2} (3p^{2} - 2)^{2}$$

$$= \underline{\qquad \qquad }$$

$$(y + 4)^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(3p^2-2)^2$$

Cube of a Binomial

$$(a + b)^{3} = a^{3} + 3a^{2}b \qquad (x + 1)^{3}$$

$$+ 3ab^{2} + b^{3} =$$

$$(a - b)^{3} = a^{3} - 3a^{2}b \qquad (r - 3)^{3}$$

$$+ 3ab^{2} - b^{3} =$$

$$(x + 1)^3$$

$$(a-b)^3 = a^3 - 3a^2b$$

$$(r-3)^3$$

Find the product.

5.
$$(x+2)^3$$

6.
$$(7y-2)^2$$

7.
$$(4d+3)(4d-3)$$

8.
$$(2a+5)^2$$

Advanced Algebra **5**-3

12) Write a polynomial model in standard form for the volume of the rectangular prism.

Find the product of the three binomials.

45)
$$(x + 9) (x - 2) (x - 7)$$

51)
$$(2x + 1)(3x + 1)(x + 4)$$

Find the product. 57) $(6 - x^2)^2$

57)
$$(6 - x^2)^2$$

60)
$$(7y - x)^2$$

Solve the equation.
75)
$$x^2 + 16x + 64 = 0$$

77)
$$2x^2 - 7x - 15 = 0$$

Simplify the expression.

83)
$$x^5 \cdot \frac{1}{x^2}$$

85)
$$-5^{-2}y^0$$

87)
$$\frac{3x^5y^8}{6xy^{-3}}$$

Practice B For use with pages 346-352

Find the sum or difference.

1.
$$(2y^2 - 5y + 1) + (y^2 - y - 4)$$

2.
$$(12x^2 + 8x - 3) - (11x^2 - x + 5)$$

3.
$$(6m^3-5)-(m^3+4m^2-9m-2)$$

4.
$$(5s^4 - 2s^3 + 9) - (-2s^4 + 8s^2 - s + 2)$$

5.
$$(7q - 3q^3) + (16 - 8q^3 + 5q^2 - q)$$

6.
$$(-4z^4 + 6z - 9) + (11 - z^3 + 3z^2 + z^4)$$

7.
$$(10v^4 - 2v^2 + 6v^3 - 7) - (9 - v + 2v^4)$$

8.
$$(4x^5 + 3x^4 - 5x + 1) - (x^3 + 2x^4 - x^5 + 1)$$

Find the product.

9.
$$2x^3(5x-1)$$

10.
$$(w-8)(w-1)$$

11.
$$(c+4)(c+10)$$

12. (g+9)(g-2)

13.
$$(y-1)(y^2+6y-2)$$

14. $(n+5)(2n^2-n-7)$

15.
$$(x-3)^2$$

16. $(4t+1)^2$

17.
$$(z-5)^3$$

18. $(2f+1)^3$

Write the volume of the figure as a polynomial in standard form.

19.
$$V = \ell wh$$

20. $V = \frac{1}{3}\pi r^2 h$

Al	gebra	II

Name		
Date	Hr	

5.4, Factor and Solve Polynomial Equations

GOAL Factor and solve other polynomial equations.

Vocabulary

A polynomial with two or more terms is a **prime polynomial** if it cannot be written as a product of polynomials of lesser degree using only integer coefficients and constants and if the only common factors of its terms are -1 and 1.

A polynomial is **factored completely** if it is written as a monomial or the product of a monomial and one or more prime polynomials.

For some polynomials you can **factor by grouping** pairs of terms that have a common monomial factor.

An expression of the form $au^2 + bu + c$, where u is any expression in x, is said to be in quadratic form.

EA	CTC	RI	NG	PO	LYN	IOR	MIA	ILS
----	-----	----	----	----	-----	-----	-----	-----

· · · · · · · · · · · · · · · · · · ·
Definition A polynomial with two or more terms is a prime polynomial if itbe written as a product of polynomials of lesser degree using only integer coefficients and constants and if the only common factors of its terms are and,
Example $16x^2 - 4x + 8$ a prime polynomial because is a common factor of all its terms.
Definition A polynomial is factored completely if it is written as a monomial or the product of a monomial and one or morepolynomials.
Example $(x + 2)(x^2 - 5x + 6)$ is not factored completely because $x^2 - 5x + 6 = $

SPECIAL FACTORING PATTERNS

Sum of Two Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

Example

$$x^3 + 8 = ($$
 $)($ $)$

Difference of Two Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Example

$$8x^3 - 1 = ()()$$

Example 1 Factor the sum or difference of two cubes

Factor the polynomial completely.

a.
$$z^3 - 125 = 1$$

Difference of two cubes

b.
$$81y^4 + 192y = 3y(\underline{})$$

Factor common monomial.

Sum of two cubes

Example 2 Factor by grouping

Factor the polynomial $x^3 - 2x^2 - 9x + 18$ completely.

$$x^3 - 2x^2 - 9x + 18$$
= $(____) - (____)$

Factor by grouping.

Distributive property

Difference of two squares

Factor completely: (a) $16x^4 - 256$ and (b) $3y^7 - 15y^5 + 18y^3$.

Factor the polynomial completely.

1.
$$7x^5 - 56x^2$$

2.
$$128y^6 + 2$$

3.
$$x^3 - 3x^2 - 4x + 12$$

$$4. \quad y^3 + 7y^2 - 9y - 63$$

5.
$$3b^6 + 6b^4 + 3b^2$$

6.
$$z^8 - 16$$

What are the real-number solutions of the equation $x^4 + 9 = 10x^2$?

$$x^4 + 9 = 10x^2$$
 Write original equation.

Write in standard form.

Factor trinomial.

Difference of two squares

$$\dot{x} = \underline{\hspace{1cm}}, x = \underline{\hspace{1cm}}, \dot{x} = \underline{\hspace{1cm}}, \dot{x} = \underline{\hspace{1cm}}$$

Zero product property

Find the real-number solutions of the equation.

7.
$$x^4 - 3x^2 + 2 = 0$$

$$8. \quad x^5 - 8x^3 = -12x$$

7.
$$x^4 - 3x^2 + 2 = 0$$
 8. $x^5 - 8x^3 = -12x$ **9.** $x^5 - 12x^3 = -27x$

5-4 Factor the Sum or Difference of Cubes

Sum of Two Cubes

Difference of Two Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

1)
$$64x^3 + 1$$

2)
$$54x^3 - 16$$

3)
$$x^3 + 125$$

4)
$$x^3 - 343$$

5)
$$64x^3 - 1$$

6)
$$8x^3 + 27$$

7)
$$3x^3 - 24$$

8)
$$1000x^3 - 729$$

Solve a polynomial equation

The dimensions (in inches) of a jewelry box are: length 4x, width (x - 1), and height (x - 2). If the volume of the box is 24 cubic inches, find the dimensions of the box.

Solution

The only real solution is x = 3. The jewelry box is 12 inches long, 2 inches wide, and 1 inch high.

10. The dimensions (in inches) of a jewelry box are: length 2x, width (x - 1), and height (x - 3). If the volume of the box is 24 cubic inches, find the dimensions of the box.

Length

Width

Height

Find the greatest common factor of the terms in the polynomial.

1.
$$4x^4 + 12x^3$$

2.
$$10y^2 + 4y - 64$$

3.
$$16x^5 - 8x$$

4.
$$32n^5 - 64n^3 + 16n^2$$
 5. $15p^6 - 5p^4 - 10p^2$ **6.** $36c^9 + 13$

5.
$$15p^6 - 5p^4 - 10p^2$$

6.
$$36c^9 + 13$$

Watch the polynomial with its factorization.

7.
$$3x^2 + 11x + 6$$

8.
$$x^3 - 4x^2 + 4x - 16$$

9.
$$125x^3 - 216$$

10.
$$2x^7 - 2x^5 - 24x^3$$

11.
$$2x^5 + 4x^4 - 4x^3 - 8x^2$$

12.
$$2x^3 - 32x$$

A.
$$2x^3(x+2)(x-2)(x^2+3)$$

B.
$$2x(x+4)(x-4)$$

c.
$$(3x+2)(x+3)$$

D.
$$(x^2+4)(x-4)$$

E.
$$2x^2(x^2-2)(x+2)$$

F.
$$(5x-6)(25x^2+30x+36)$$

Factor the sum or difference of cubes.

13.
$$s^3 - 1$$

14.
$$q^3 + 1$$

15.
$$x^3 - 27$$

• **16.**
$$a^3 + 125$$

17.
$$h^3 + 64$$

18.
$$8y^3 - 125$$

Factor the polynomial by grouping.

19.
$$x^3 + 2x^2 + 3x + 6$$

20.
$$z^3 - z^2 + 5z - 5$$

21.
$$f^3 + 4f^2 + f + 4$$

22.
$$m^3 - 2m^2 + 4m - 8$$

23.
$$2x^4 - x^3 + 6x - 3$$

24.
$$t^3 - 2t^2 - 9t + 18$$

Find the real-number solutions of the equation.

25.
$$w^2 - 3w = 0$$

26.
$$v^3 + 5v^2 = 0$$

$$27. x^2 - 5x + 6 = 0$$

28.
$$d^2 - 16 = 0$$

29.
$$10s^3 = 30s^2$$

30.
$$x^3 + x^2 - 9x - 9 = 0$$

Algebra	aШ
---------	----

Name______ Date Hr_____

Review for Mini Quiz 5.2-5.4

Describe the end behavior of the graph of the polynomial function.

1.
$$f(x) = -3x^5 - 2x^4 + 3x^3 + 6x$$

$$f(x) \to \underline{\qquad} as \ x \to -\infty$$

$$f(x) \to \underline{\qquad} as \ x \to +\infty$$

2.
$$f(x) = 2x^{20} - 5x^{11} - 4x^9 + 2x^4 + x^2 - 7$$

 $f(x) \to as \ x \to -\infty$
 $f(x) \to as \ x \to +\infty$

Use synthetic substitution to evaluate the function.

3.
$$f(x) = 3x^6 - 5x^4 - 3x^3 + x^2 - 4$$
; $x = 3$

Factor completely.

$$4. -5x^4 + 320x$$

5.
$$2x^4 + 10x^3 - 18x^2 - 90x$$